Pii: S0306-4522(99)00285-7
نویسنده
چکیده
Fragile X syndrome is an X-linked form of mental retardation resulting from the absence of expression of the fragile X mental retardation 1 gene. The encoded protein is a ribosome-associated, RNA-binding protein thought to play a role in translational regulation of selective messenger RNA transcripts. A knockout mouse has been described that exhibits subtle deficits in spatial learning but normal early-phase long-term potentiation. We expanded these studies by examination of late-phase hippocampal long-term potentiation, the protein synthesis-dependent form of long-term potentiation, in the Fmr1 knockout mice. Here, late-phase long-term potentiation was normal, suggesting either that absence of fragile X mental retardation protein has no influence on long-term potentiation or that any influence is too subtle to be detected by this technique. Alternatively, the hippocampus may not be the primary site affected by the absence of this protein. Accordingly, we examined spatial learning in the knockout mice using the hippocampus-dependent Morris water maze. Contrary to earlier reports, near-normal performance was observed. Since the knockout line used in this study has been back-crossed to C57BL/6 for more than 15 generations, whereas the line used in the earlier studies contained a substantial strain 129 contribution, we examined F1 siblings of knockout and 129 crosses. Here, significant but subtle increased swim latencies in reversal trials were observed, in agreement with the previous studies. These data suggest strain differences between C57BL/6 and 129 that influence the Fmr1 knockout phenotype. In order to investigate a paradigm less dependent on hippocampal function, the knockout mice were examined using the conditional fear paradigm. Here, the knockout animals displayed significantly less freezing behavior than their wild-type littermates following both contextual and conditional fear stimuli. These data suggest that amygdala disturbances may also be involved in fragile X syndrome. q 1999 IBRO. Published by Elsevier Science Ltd.
منابع مشابه
Pii: S0306-4522(99)00292-4
An essential role for caspases in programmed neuronal cell death has been demonstrated in various in vitro studies, and synthetic caspase inhibitors have recently been shown to prevent neuronal cell loss in animal models of focal cerebral ischemia and traumatic brain injury, respectively. The therapeutic utility of caspase inhibitors, however, will depend on preservation of both structural and ...
متن کاملPii: S0306-4522(99)00150-5
The amplitude of excitatory postsynaptic potentials and currents increases with membrane potential hyperpolarization. This has been attributed to an increase in the driving force when the membrane potential deviates from the equilibrium potential of the respective ions.17 Here we report that in a subset of neocortical and hippocampal synapses, postsynaptic hyperpolarization affects traditional ...
متن کاملPii: S0306-4522(99)00381-4
Glutamate is the principal excitatory neurotransmitter in the mammalian brain. Several lines of evidence suggest that glutamatergic hypoactivity exists in the Alzheimer’s disease brain, where it may contribute to both brain amyloid burden and cognitive dysfunction. Although metabotropic glutamate receptors have been shown to alter cleavage of the amyloid precursor protein, little attention has ...
متن کاملPii: S0306-4522(99)00296-1
Transgenic mice overexpressing brain-derived neurotrophic factor from the b-actin promoter were tested for behavioral, gross anatomical and physiological abnormalities. Brain-derived neurotrophic factor messenger RNA overexpression was widespread throughout brain. Overexpression declined with age, such that levels of overexpression decreased sharply by nine months. Brain-derived neurotrophic fa...
متن کاملPii: S0306-4522(99)00273-0
The role of carnosine, N-acetylcarnosine and homocarnosine as scavengers of reactive oxygen species and protectors against neuronal cell death secondary to excitotoxic concentrations of kainate and N-methyl-d-aspartate was studied using acutely dissociated cerebellar granule cell neurons and flow cytometry. We find that carnosine, N-acetylcarnosine and homocarnosine at physiological concentrati...
متن کامل